Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(4): e9687, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38212650

RESUMO

RATIONALE: The sampling throughput of immediate drop-on-demand technology (I.DOT) coupled with an open port sampling interface (OPSI) is limited by software communication. To enable much-needed high-throughput mass spectrometry (MS) analysis capabilities, a novel software was developed that allows for flexible sample selection from a 96-well plate and for maximized analysis throughput using I.DOT/OPSI-MS coupling. METHODS: Wells of a 96-well I.DOT plate were filled with propranolol solution and were used to test maximum sampling throughput strategies to minimize analysis time. Demonstration of chemical reaction monitoring was done using acid-catalyzed ring closure of 2,3-diaminonaphthalene (DAN) with nitrite to form 2,3-naphthotriazole (NAT). Analytes were detected in positive electrospray ionization mode using selected reaction monitoring. RESULTS: A maximum throughput of 1.54 s/sample (7.41 min/96-well plate with three technical replicates) was achieved, and it was limited by the peak width of the MS signal resulting in an occasional slight overlap between the peaks. Relative standard deviation was 10 ± 1% with all tested sampling strategies. Chemical reaction monitoring of DAN to NAT using nitrite was successfully accomplished with 2 s/sample throughout showing almost complete transformation in 10 min with no signal overlap. CONCLUSIONS: This work illustrates the development of a noncontact, automated I.DOT/OPSI-MS system with improved throughput achieved through an optimized software interface. Its achievable analysis time and precision make it a viable approach for drug discovery and in situ reaction monitoring studies.

2.
Anal Chem ; 95(44): 16418-16425, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37888790

RESUMO

Here, we present a rapid droplet sampling interface (RDSI) electrospray ionization mass spectrometry (ESI-MS) system as a high-throughput, low-volume, noncontact, and minimal-carryover approach for characterization of liquids. Liquid characterization was achieved by combining droplet ejection with an open-face microflow capillary with a 2.5 µL/min continuous flow of carrier solvent. Through this implementation, single 0.3 nL droplets containing the analyte effectively mix with 4-8 nL of carrier solvent and create a combined electrospray plume. The carrier solvent continuously cleaned the system, eliminating carryover. A sampling rate of 5 Hz was achieved for droplets containing 1 µM propranolol or 5 µM leu-enkephalin with each droplet fully baseline-resolved (138 ± 32 ms baseline-to-baseline). Using a SCIEX API4000 mass spectrometer, a lower limit of quantification (LLOQ) of propranolol was 15 nM, corresponding to 1.16 fg of propranolol in the droplet, and was linear across 3 orders of magnitude. Quantitation could be achieved by adding an isotopically labeled internal standard, as done in conventional ESI. Signal transients were faster than the acquisition speed of the mass spectrometer, resulting in artificially high reproducibility of 15-30% RSD droplet-to-droplet. Analyte-solvent mixing ratios could be controlled by adjusting droplet positioning along the open-face capillary with an optimal position about 0.4 mm from the tip end. The range of analyte coverage was exemplified by measures of peptides and drugs in methanol, water, and buffer solutions. In a comparison to the Open Port Sampling Interface (OPSI) implemented on the same system, the RDSI had 78× greater sensitivity, 6× greater throughput and used significantly less carrier solvent.


Assuntos
Propranolol , Espectrometria de Massas por Ionização por Electrospray , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/análise , Solventes
3.
Anal Chem ; 95(39): 14521-14525, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738474

RESUMO

The rhizosphere is the narrow region of soil surrounding the roots of plants that is influenced by root exudates, root secretions, and associated microbial communities. This region is crucial to plant growth and development and plays a critical role in nutrient uptake, disease resistance, and soil transformation. Understanding the function of exogenous compounds in the rhizosphere starts with determining the spatiotemporal distribution of these molecular components. Using liquid microjunction surface-sampling probe mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes enables in situ, nondisruptive, and nondestructive spatiotemporal measurement of exogenous compounds from plant roots. However, long imaging times (>2 h) can negatively affect plant heath and limit temporal studies. Here, we present a novel strategy to optimize the number and location of sampling sites on these microporous membrane-covered microfluidic devices. This novel, "structure-driven" sampling workflow takes into consideration the channel structure of the microfluidic device to maximize sampling from the channels and minimize acquisition time (∼4× less time in some cases while providing similar chemical image accuracy), thus reducing stress on plants during in situ LMJ-SSP-MS analysis.


Assuntos
Microbiota , Solo , Espectrometria de Massas , Solo/química , Rizosfera , Raízes de Plantas/química , Microbiologia do Solo
4.
J Am Soc Mass Spectrom ; 34(7): 1383-1391, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37262418

RESUMO

Enzymatic biodegradation of polymers, such as polyamides (PA), has the potential to cost-effectively reduce plastic waste, but enhancements in degradation efficiency are needed. Engineering enzymes through directed evolution is one pathway toward identification of critical domains needed for improving activity. However, screening such enzymatic libraries (100s-to-1000s of samples) is time-consuming. Here we demonstrate the use of robotic autosampler (PAL) and immediate drop on demand technology (I.DOT) liquid handling systems coupled with open-port sampling interface-mass spectrometry (OPSI-MS) to screen for PA6 and PA66 hydrolysis by 6-aminohexanoate-oligomer endo-hydrolase (nylon hydrolase, NylC) in a high-throughput (8-20 s/sample) manner. The OPSI-MS technique required minimal sample preparation and was amenable to 96-well plate formats for automated processing. Enzymatic hydrolysis of PA characteristically produced soluble linear oligomer products that could be identified by OPSI-MS. Incubation temperatures and times were optimized for PA6 (65 °C, 24 h) and PA66 (75 °C, 24 h) over 108 experiments. In addition, the I.DOT/OPSI-MS quantified production of PA6 linear dimer (8.3 ± 1.6 µg/mL) and PA66 linear monomer (13.5 ± 1.5 µg/mL) by NylC with a lower limit of detection of 0.029 and 0.032 µg/mL, respectively. For PA6 and PA66, linear oligomer production corresponded to 0.096 ± 0.018% and 0.204 ± 0.028% conversion of dry pellet mass, respectively. The developed methodology is expected to be utilized to assess enzymatic hydrolysis of engineered enzyme libraries, comprising hundreds to thousands of individual samples.


Assuntos
Hidrolases , Nylons , Nylons/química , Nylons/metabolismo , Hidrolases/metabolismo , Espectrometria de Massas , Hidrólise
5.
J Am Soc Mass Spectrom ; 33(9): 1615-1625, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904879

RESUMO

The plant rhizosphere is a complex and dynamic chemical environment where the exchange of molecular signals between plants, microbes, and fungi drives the development of the entire biological system. Exogenous compounds in the rhizosphere are known to affect plant-microbe organization, interactions between organisms, and ultimately, growth and survivability. The function of exogenous compounds in the rhizosphere is still under much investigation, specifically with respect to their roles in plant growth and development, the assembly of the associated microbial community, and the spatiotemporal distribution of molecular components. A major challenge for spatiotemporal measurements is developing a nondisruptive and nondestructive technique capable of analyzing the exogenous compounds contained within the environment. A methodology using liquid microjunction-surface sampling probe-mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes was developed for in situ, spatiotemporal measurement of amino acids (AAs) from bacterial biofilms and plant roots. Exuded arginine was measured from a living Pantoea YR343 biofilm, which resulted in a chemical image indicative of biofilm growth within the device. Spot sampling along the roots of Populus trichocarpa with the LMJ-SSP-MS resulted in the detection of 15 AAs. Variation in AA concentrations across the root system was observed, indicating that exudation is not homogeneous and may be linked to local rhizosphere architecture and different biological processes along the root.


Assuntos
Aminoácidos , Exsudatos de Plantas , Aminoácidos/análise , Bactérias , Biofilmes , Exsudatos e Transudatos/química , Espectrometria de Massas , Exsudatos de Plantas/análise , Exsudatos de Plantas/metabolismo , Raízes de Plantas/química
6.
Lab Chip ; 22(5): 954-963, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089295

RESUMO

The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms (e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to in situ experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of Brachypodium distachyon, and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry.


Assuntos
Aminoácidos , Rizosfera , Aminoácidos/análise , Aminoácidos/metabolismo , Ecossistema , Dispositivos Lab-On-A-Chip , Raízes de Plantas , Solo/química , Microbiologia do Solo
7.
Anal Bioanal Chem ; 413(28): 6917-6927, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34595558

RESUMO

Quantitative measure of a drug and its associated metabolite(s) with single-cell resolution is often limited by sampling throughput or other compromises that limit broad use. Here, we demonstrate the use of single-cell printing-liquid vortex capture-mass spectrometry (SCP-LVC-MS) to quantitatively measure the intracellular concentrations of amiodarone (AMIO) and its metabolite, N-desethylamiodarone (NDEA), from thousands of single cells across several AMIO incubation concentrations ranging from 0 to 10 µM. Concentrations obtained by SCP-LVC-MS were validated through comparison with average assays and traditional measurement of cells in bulk. Average of SCP-LVC-MS measurements and aggregate vial collection assay the concentrations differed by < 5%. Both AMIO and NDEA had clear log-normal distributions with similar standard deviation of concentrations in the cell population. The mean of both AMIO and NDEA intracellular concentrations were positively correlated with AMIO incubation concentration, increasing from 0.026 to 0.520 and 0.0055 to 0.048 mM for AMIO and NDEA, respectively. The standard deviation of AMIO and NDEA log-normal distribution fits were relatively similar in value across incubation concentrations, 0.15-0.19 log10 (mM), and exhibited a linear trend with respect to each other. The single cell-resolved conversion ratio of AMIO to NDEA increased with decreasing incubation concentration, 7 ± 2%, 18 ± 3%, and 20 ± 7% for 10.0, 1.0, and 0.1 µM AMIO incubation concentrations, respectively. Association with simultaneously measured lipids had several ions with statistically significant difference in intensity but no clear correlations with AMIO intracellular content was observed.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/análise , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Vasodilatadores/análise , Células Hep G2 , Humanos , Reprodutibilidade dos Testes
8.
Rapid Commun Mass Spectrom ; 35(23): e9202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34545636

RESUMO

RATIONALE: Spatially resolved and accurate quantitation of drug-related compounds in tissue is a much-needed capability in drug discovery research. Here, application of an integrated laser ablation-dropletProbe-mass spectrometry surface sampling system (LADP-MS) is reported, which achieved absolute quantitation of propranolol measured from <500 × 500 µm thin tissue samples. METHODS: Mouse liver and kidney thin tissue sections were coated with parylene C and analyzed for propranolol by a laser ablation/liquid extraction workflow. Non-coated adjacent sections were microdissected for validation and processed using standard bulk tissue extraction protocols. High-performance liquid chromatography with positive ion mode electrospray ionization tandem mass spectrometry was applied to detect the drug and its metabolites. RESULTS: Absolute propranolol concentration in ~500 × 500 µm tissue regions measured by the two methods agreed within ±8% and had a relative standard deviation within ±17%. Quantitation down to ~400 × 400 µm tissue regions was shown, and this resolution was also used for automated mapping of propranolol and phase II hydroxypropranolol glucuronide metabolites in kidney tissue. CONCLUSIONS: This study exemplifies the capabilities of integrated laser ablation-dropletProbe-mass spectrometry (LADP-MS) for high resolution absolute drug quantitation analysis of thin tissue sections. This capability will be valuable for applications needing to quantitatively understand the spatial distribution of small molecules in tissue.


Assuntos
Imagem Molecular/métodos , Preparações Farmacêuticas , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Desenho de Equipamento , Rim/química , Rim/diagnóstico por imagem , Lasers , Fígado/química , Fígado/diagnóstico por imagem , Masculino , Camundongos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Propranolol/análise , Propranolol/farmacocinética , Distribuição Tecidual
9.
J Am Soc Mass Spectrom ; 32(1): 198-205, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33180483

RESUMO

Presented is a tethered, liquid-extraction-sampling interface designed for the mass spectrometric surface sampling/analysis of 3D objects. The tethered, open port sampling interface (TOPSI) incorporates a vacuum line between the sampling probe and ionization source, which enables the ability for an extended, tethered sample transfer line. Herein, several designs of the hand-held TOPSI are presented and evaluated on the basis of the analytical metrics of analyte transport time, peak width, and analyte sensitivity. The best analytical metrics were obtained with capillary flow resistances arranged in a particular order and the vacuum region set at 6.2 kPa. This TOPSI design incorporated a transfer capillary 1 m in length, while retaining a fast analyte transport time (12 s), short signal peak width (5 s baseline-to-baseline), and high analyte signal at 90% of that obtained with a regular open port sampling interface (OPSI). The hand-held TOPSI was demonstrated for the characterization of extracted small molecules and metabolites from the surface of mint and rosemary leaves.

10.
Rapid Commun Mass Spectrom ; 35(5): e9010, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232548

RESUMO

RATIONALE: The ability to quantify drugs and metabolites in tissue with sub-mm resolution is a challenging but much needed capability in pharmaceutical research. To fill this void, a novel surface sampling approach combining laser ablation with the commercial dropletProbe automated liquid surface sampling system (LA-dropletProbe) was developed and is presented here. METHODS: Parylene C-coated 200 × 200 µm tissue regions of mouse brain and kidney thin tissue sections were analyzed for propranolol by laser ablation of tissue directly into a preformed liquid junction. Propranolol was detected by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) in positive electrospray ionization mode. Quantitation was achieved via application of a stable-isotope-labeled internal standard and an external calibration curve. RESULTS: The absolute concentrations of propranolol determined from 200 × 200 µm tissue regions were compared with the propranolol concentrations obtained from 2.3-mm-diameter tissue punches of adjacent, non-coated sections using standard bulk tissue extraction protocols followed by regular HPLC/MS/MS analysis. The average concentration of propranolol in both organs determined by the two employed methods agreed to within ±12%. Furthermore, the relative abundances of phase II hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous results. CONCLUSIONS: This work illustrates that depositing a thin layer of parylene C onto thin tissue prior to analysis, which seals the surface and prevents direct liquid extraction of the drug from the tissue, coupled to the novel LA-dropletProbe surface sampling system is a viable approach for sub-mm resolution quantitative drug distribution analysis.


Assuntos
Química Encefálica , Cromatografia Líquida de Alta Pressão/métodos , Terapia a Laser/métodos , Fígado/química , Propranolol/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Encéfalo/metabolismo , Rim/química , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos
11.
Anal Bioanal Chem ; 413(10): 2619-2636, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33140126

RESUMO

Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.


Assuntos
Técnicas Histológicas/métodos , Espectrometria de Massas/métodos , Animais , Desenho de Equipamento , Técnicas Histológicas/instrumentação , Humanos , Espectrometria de Massas/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Análise Serial de Tecidos/instrumentação , Análise Serial de Tecidos/métodos
12.
Opt Lett ; 45(11): 3087-3090, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479466

RESUMO

Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields necessary to drive the third-order optical responses over the large focal region. Here, we report a new wide-field CARS microscope enabled by a total internal reflection excitation scheme using a femtosecond Ti:Sapphire oscillator to generate pump and broadband near-infrared Stokes pulses. The spectrally broad Stokes pulse, in combination with its inherent chirp, offers not only access to a wide range of Raman modes spanning ∼1000 to ∼3500cm-1 but also a straightforward means to select vibrational transitions within this range by simply varying the time delay between the pulses. The unique capabilities of this wide-field CARS microscope were validated by acquiring high-quality CARS images from the model and complex biological samples on conventional microscope coverslips.

13.
J Am Soc Mass Spectrom ; 31(4): 832-839, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233378

RESUMO

The ability to observe dynamic chemical processes (e.g., signaling, transport, etc.) in vivo or in situ using nondestructive chemical imaging opens a new door to understanding the complex dynamics of developing biological systems. With the advent of "biology-on-a-chip" devices has come the ability to monitor dynamic chemical processes in a controlled environment, using these engineered habitats to capture key features of natural systems while allowing visual observation of system development. Having the capability to spatially and temporally map the chemical signals within these devices may yield new insights into the forces that drive biosystem development. Here, a porous membrane sealed microfluidic device was designed to allow normal microfluidic operation while enabling continuous, location specific sampling and chemical characterization by liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS). LMJ-SSP was used to extract fluids with nL-to-µL/min flow rates directly from selected areas of the microfluidic device without negatively impacting the device function. These extracts were subsequently characterized using MS. This technique was used to acquire MS images of the entirety of several multi-input microfluidic devices having different degrees of fluid mixing. LMJ-SSP MS imaging visualized the spatial distribution of chemical components within the microfluidic channels and could visualize chemical reactions occurring in the device. These microfluidic devices with a porous membrane wall are wholly compatible with the construction of biology-on-a-chip devices. This ultimately would enable correlation of biosystem physical structure with an evolving chemical environment.


Assuntos
Dispositivos Lab-On-A-Chip , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Desenho de Equipamento , Membranas Artificiais , Técnicas Analíticas Microfluídicas , Imagem Molecular/instrumentação , Porosidade
14.
Methods Mol Biol ; 2064: 89-101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31565768

RESUMO

Laser capture microdissection is a valuable technique in individually isolating single cells whether in tissue networks or deposited from a cell suspension. New developments have enabled coupling of laser capture microdissection with mass spectrometry via liquid vortex capture sampling probe. This enables online metabolic profiling of sectioned cells. Here, we describe the protocol used to deposit, isolate, and individually chemically characterize single Allium cepa and Chlamydomonas reinhardtii cells by laser capture microdissection-liquid vortex capture mass spectrometry.


Assuntos
Chlamydomonas reinhardtii/química , Microdissecção e Captura a Laser/instrumentação , Espectrometria de Massas/instrumentação , Metabolômica/instrumentação , Microalgas/química , Cebolas/química , Chlamydomonas reinhardtii/citologia , Desenho de Equipamento , Microdissecção e Captura a Laser/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Microalgas/citologia , Cebolas/citologia , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
15.
Anal Chem ; 91(9): 6118-6126, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30955322

RESUMO

We report a method that enables untargeted, high throughput, and quantitative mass spectrometric analysis of single cells from cell suspension without needing additional sample preparation procedures (e.g., molecular tagging) through the combination of single-cell printer technology and liquid vortex capture-mass spectrometry (SCP-LVC-MS). The operating principle behind the SCP-LVC-MS technology is single cell isolation via small droplet piezoelectric ejection followed by capture of the droplet into an LVC-MS sampling probe. Once exposed to an appropriate solvent, the cell is lysed, extracted, and analyzed by MS. The SCP-LVC-MS approach was validated by measuring the lipid composition of microalgae, Chlamydomonas reinhardtii (ChRe) and Euglena gracilis (EuGr), and HeLa cells in their native growth media. Numerous diacylglyceryltrimethylhomo-Ser (DGTS), phosphatidylcholine (PC), monogalactosyldiacylglycerol (MGDG), and digalactosyldiacylglycerol (DGDG) lipids were observed in single cells. Continuous solvent flow ensures that cells are analyzed rapidly, and no signal carryover between cells is observed. ChRe and EuGr microalgae mixed together in the same solution were differentiated cell-by-cell in real-time based on differences between levels of diacylglyceryltrimethylhomo-Ser (DGTS) and phosphatidylcholine (PC) lipids measured in each cell. Several DGTS lipids present in ChRe were quantified with single-cell resolution by normalizing to a DGTS(32:0) internal standard added to the LVC probe solvent during analysis. Quantitative peak areas were validated by comparing to bulk lipid extracts. Lastly, peak area distributions comprised of hundreds of cells were compared for ChRe after 5 days of nitrogen-limited and normal growth conditions, which show clear differences and the ability to resolve cellular population differences with single-cell resolution.


Assuntos
Microdissecção e Captura a Laser , Lipídeos/análise , Análise de Célula Única , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Euglena gracilis/química , Euglena gracilis/citologia , Euglena gracilis/crescimento & desenvolvimento , Células HeLa , Humanos , Espectrometria de Massas , Tamanho da Partícula , Propriedades de Superfície
16.
J Colloid Interface Sci ; 537: 389-395, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458349

RESUMO

HYPOTHESIS: Controlling nanomaterial interfaces for emerging technologies has driven the need to understand the molecular species located there; however, challenges arise using traditional analytical techniques to directly characterize the molecular structure and local environments of these interfacial species due to their low relative populations. We hypothesized that vibrational sum frequency generation (vSFG) spectroscopy would be uniquely sensitive to the chemical modification of nanoparticle surfaces that is obscured using traditional bulk sensitive methods. EXPERIMENTS: Octadecylamine ligands were removed from model CdSe quantum dot surfaces using a common precipitation-resuspension procedure with polar protic and aprotic nonsolvents. Vibrational spectra of the ligands at the surface were collected with vSFG to directly probe the ligand ordering and coverage. Photoluminescence (PL), optical absorption, NMR, and mass spectrometry measurements were conducted for comparison. FINDINGS: vSFG was found to be sensitive to subtle changes in ligand disorder over multiple precipitation-resuspension washes, and a limit to the number of ligand molecules removed from the surface and subsequent amount of disorder introduced to their packing was clearly observed. We also find that nonsolvents do not remain associated with the surface after washing.

17.
Front Plant Sci ; 9: 1211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177941

RESUMO

Current analytical methods are not capable of providing rapid, sensitive, and comprehensive chemical analysis of a wide range of cellular constitutes of single cells (e.g., lipids, metabolites, proteins, etc.) from dispersed cell suspensions and thin tissues. This capability is important for a number of critical applications, including discovery of cellular mechanisms for coping with chemical or environmental stress and cellular response to drug treatment, to name a few. Here we introduce an optically guided platform and methodology for rapid, automated recognition, sampling, and chemical analysis of surface confined individual cells utilizing a novel hybrid laser capture microdissection/liquid vortex capture/mass spectrometry system. The system enabled automated analysis of single cells by reliably detecting and sampling them either through laser ablation from a glass microscope slide or by cutting the entire cell out of a poly(ethylene naphthalate)-coated membrane substrate that the cellular sample is deposited on. Proof of principle experiments were performed using thin tissues of Allium cepa and cultured Euglena gracilis and Phacus cell suspensions as model systems for single cell analysis using the developed method. Reliable, hands-off laser ablation sampling coupled to liquid vortex capture/mass spectrometry analysis was conducted for hundreds of individual Allium cepa cells in connected tissue. In addition, more than 300 individual Euglena gracilis and Phacus cells were analyzed automatically and sampled using laser microdissection sampling with the same liquid vortex capture/mass spectrometry analysis system. Principal component analysis-linear discriminant analysis, applied to each mass spectral dataset, was used to determine the accuracy of differentiation of the different algae cell lines.

18.
Rapid Commun Mass Spectrom ; 32(5): 414-422, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29297944

RESUMO

RATIONALE: Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described. METHODS: Individual 40 × 40 µm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof. Principal component analysis-linear discriminant analysis (PCA-LDA), applied to each mass spectral dataset, was used to determine the accuracy of differentiation of mouse brain tissue regions. RESULTS: Mass spectral differences associated with capture/ESI solvent composition manifested as altered relative distributions of ions rather than the presence or absence of unique ions. In negative ion mode ESI, 80/20 (v/v) methanol/water yielded spectra with low signal/noise ratios relative to other solvents. PCA-LDA models acquired using 90/10 (v/v) methanol/chloroform differentiated tissue regions with 100% accuracy while data collected using methanol misclassified some samples. The combination of SWATH-MS and TOF-MS data improved differentiation accuracy. CONCLUSIONS: Combined TOF-MS and SWATH-MS data differentiated white, grey, granular, and nucleus mouse tissue regions with greater accuracy than when solely using TOF-MS data. Using 90/10 (v/v) methanol/chloroform, tissue regions were perfectly differentiated. These results will guide future studies looking to utilize the potential of LMD-LVC/ESI-MS for tissue and disease differentiation.

19.
Anal Chem ; 88(11): 6026-34, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214103

RESUMO

Spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser "cut and drop" sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 µm × 20 µm or 40 µm × 40 µm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolol-d7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser "cut and drop" sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.


Assuntos
Química Encefálica , Internet , Rim/química , Microdissecção e Captura a Laser , Fígado/química , Propranolol/análise , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Camundongos , Estrutura Molecular
20.
Rapid Commun Mass Spectrom ; 30(7): 927-32, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969935

RESUMO

RATIONALE: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe the chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. METHODS: Two image metrics, viz., "chemical image contrast" (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and "corrected resolving power factor" (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest in an image, were developed. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. RESULTS: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. CONCLUSIONS: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...